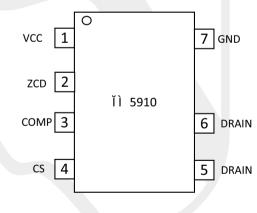


DESCRIPTION

SM5910 is a highly-integrated, single stage power factor correction, low startup current, Quasi resonant mode, integrated Power MOSFET controller. These functions enable the LED driver to easily meet constant current accuracy of <3%, low current THD and high power factor requirements. SM5910 integrate 600V power MOSFET with low RDSON. It works without secondary feedback circuitry or compensation circuitry. Our proprietary closed-loop feedback constant current technology helps in achieving precision constant current control under a small number of peripheral devices and loosen parameter conditions. The integrated functions also include the LED short protection, over voltage protection, over load protection.


The COMP pin controls the duty by connected an RC compensation network to ground and forming the closed loop feedback control.

SM5910 improves the performance and reduces the system cost of LED driver. It is a 7 pin, SOP-7L package.

FEATURES

- Built in single-stage, active power factor correction
- Internal 600V Power MOSFET
- ±3% LED Output current accuracy
- Excellent line voltage regulation and load regulation
- Proprietary closed-loop feedback constantcurrent control
- · Quasi-resonant switching mode, switching loss
- Ultra-low start up current
- Low Input current Total Harmonic Distortion
- LED Open circuit/Short circuit protection
- Current sampling resistor open circuit protection
- CS cycle-by-cycle current limit
- VCC power supply Over-voltage/Under-voltage protection
- Auto restart function
- Over temperature protection
- SOP-7L Package

PIN CONFIGURATION

PIN DESCRIPTIONS

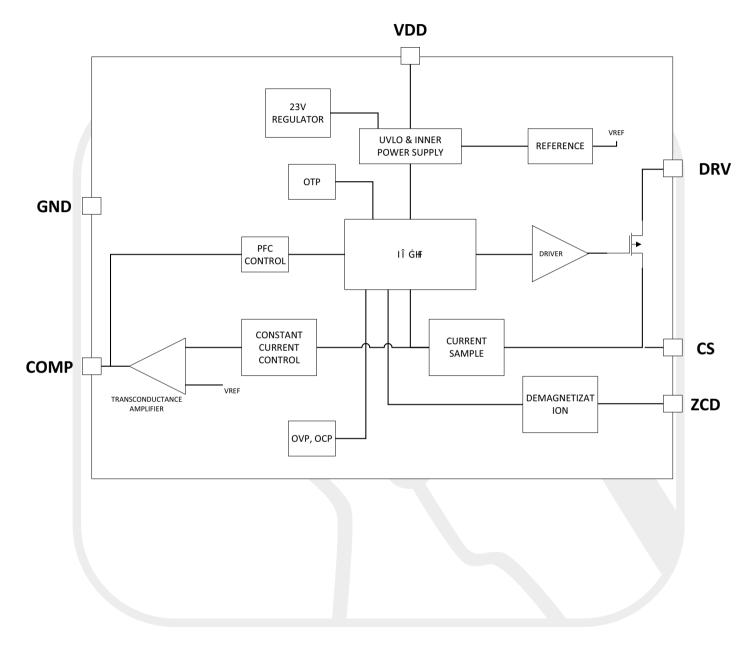
Pin Name	Pin Description			
VCC	Compensation loop			
ZCD	Inductor current zero-cross detection, LED open-circuit protection			
COMP	Loop compensation, RC network to ground			
CS	Inductor current sampling			
DRN	Drain of Internal Power MOSFET			
GND	Ground return for all internal circuit			

TYPICAL APPLICATION CIRCUITS

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Range	Unit
MOSFET Drain Voltage	Vdrain	-0.3 ~ 600	V
VCC voltage to GND	Vcs	-0.3 ~ 25	V
CS, COMP voltage to GND	VCOMP	-0.3 ~ 6	V
ZCD voltage to GND	Vzcd	-0.3 ~ 6	V
Junction Temperature Range	Tj	-40 to +150	С
Storage Temperature Range	TSTG	-50 to +150	С
Lead Temperature (Soldering 10 sec)	TLEAD	260	С
Maximum current sink to VDD		5	mA
Thermal Resistance Junction to Ambient (Note2)		220	C/W
Thermal Resistance Junction to Case		106.6	C/W
ESD Rating (Human body mode) (Note 3)	VESD	2	kV

- **Note 1:** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- **Note 2:** Thermal Resistance is specified with the component mounted on a low effective thermal conductivity test board in free air at T=25°C.
- Note 3: Devices are ESD sensitive. Handing precaution recommended.
- Note 4: The device is not guaranteed to function outside its operating conditions.


ELECTRICAL CHARACTERISTICS

TA= 25°C, unless otherwise specified.

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
Power ON	١					
Vst	VCC Starting voltage	Vvcc Rise		16.5		V
Vuv	VCC Under-voltage lockout	Vvcc Decline		9.5		V
Vvcc_ovp	VCC Over-voltage protection threshold	Vvcc Rise		23.7		V
lsт	VCC Starting current	Vvcc= Vst-1V		16		μA
lop	VCC Operating current	Fosc=70kHz; CL=100pF		1		mA
IOVP	Over-voltage leakage current at VCC	Vvcc>Vvcc_ovp		45		mA
Voltage R	leference					
Vref	Avg lout reference voltage threshold		291	300	309	mV
Vcs_limit	CS -by cycle current limit threshold voltage			1.2		V
Vzcd_ovp	ZCD over-voltage protection			2		V
Timing or	Frequency					
TLEB	Current detecting leading edge blanking time			400		ns
Ton_max	Maximum ON time	Vсомр=2.5V		35		μs
TOFF_MIN	Minimum off-time			1		μs
TOFF_MAX	Maximum Off-time			100		μs
Fosc_max	Maximum operating frequency			180		kHz
MOSFET						
Ron	Power MOSFET ON resistance	Vgs=18V / Ids=0.5A		3.5		ohm
Bvdss	Maximum Breakdown voltage	Vgs=0V / Ids=250uA	600	250		V
ILEAK	MOSFET Leakage current	V _{GS} =0V / V _{DS} = 600V		500		mA
Over temp	perature Protection					
Tsd	OTP temperature			150		deg C
THYS	OTP Hysteresis			125		deg C

BLOCK DIAGRAM

